Emerging Mosquito Resistance to Piperonyl Butoxide-Synergized Pyrethroid Insecticide and Its Mechanism

Author:

Zhou Guofa1ORCID,Li Yiji1,Jeang Brook1,Wang Xiaoming1ORCID,Cummings Robert F2,Zhong Daibin1,Yan Guiyun1

Affiliation:

1. Program in Public Health, University of California, Irvine, CA, USA

2. Orange County Mosquito and Vector Control District, Garden Grove, CA, USA

Abstract

Abstract Piperonyl butoxide (PBO)-synergized pyrethroid products are widely available for the control of pyrethroid-resistant mosquitoes. To date, no study has examined mosquito resistance after pre-exposure to PBO and subsequent enzymatic activity when exposed to PBO-synergized insecticides. We used Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of arboviruses and lymphatic filariasis, as a model to examine the insecticide resistance mechanisms of mosquitoes to PBO-synergized pyrethroid using modified World Health Organization tube bioassays and biochemical analysis of metabolic enzyme expressions pre- and post-PBO exposure. Mosquito eggs and larvae were collected from three cities in Orange County in July 2020 and reared in insectary, and F0 adults were used in this study. A JHB susceptible strain was used as a control. Mosquito mortalities and metabolic enzyme expressions were examined in mosquitoes with/without pre-exposure to different PBO concentrations and exposure durations. Except for malathion, wild strain Cx quinquefasciatus mosquitoes were resistant to all insecticides tested, including PBO-synergized pyrethroids (mortality range 3.7 ± 4.7% to 66.7 ± 7.7%). Wild strain mosquitoes had elevated levels of carboxylesterase (COE, 3.8-fold) and monooxygenase (P450, 2.1-fold) but not glutathione S-transferase (GST) compared to susceptible mosquitoes. When wild strain mosquitoes were pre-exposed to 4% PBO, the 50% lethal concentration of deltamethrin was reduced from 0.22% to 0.10%, compared to 0.02% for a susceptible strain. The knockdown resistance gene mutation (L1014F) rate was 62% in wild strain mosquitoes. PBO pre-exposure suppressed P450 enzyme expression levels by 25~34% and GST by 11%, but had no impact on COE enzyme expression. Even with an optimal PBO concentration (7%) and exposure duration (3h), wild strain mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to the susceptible laboratory strain. These results further demonstrate other studies that PBO alone may not be enough to control highly pyrethroid-resistant mosquitoes due to multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored through a routine resistance management program for effective control of mosquitoes and the pathogens they transmit.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

Reference72 articles.

1. Monitoring of insecticide resistance of Culex pipiens (Diptera: Culicidae) colonies-collected from California;Ahmed;Int. J. Environ. Sci. Devel,2012

2. Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee;Amweg;Environ. Sci. Technol,2006

3. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica;Bisset;J. Med. Entomol,2013

4. Piperonyl cyclonene and piperonyl butoxide as synergists with rotenone;Brannon;J. Econ. Entomol,1947

5. An evaluation of temporal and spatial trends of pyrethroid concentrations in California surface waters;Budd;Sci. Total Environ,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3