Integrated Tick Management in Guilford, CT: Fipronil-Based Rodent-Targeted Bait Box Deployment Configuration and Peromyscus leucopus (Rodentia: Cricetidae) Abundance Drive Reduction in Tick Burdens

Author:

Linske Megan A12,Williams Scott C13ORCID,Stafford Kirby C12,Li Andrew Y4ORCID

Affiliation:

1. Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, P.O. Box 1106, 123 Huntington Street, New Haven, CT, 06504,USA

2. Department of Entomology, The Connecticut Agricultural Experiment Station, P.O. Box 1106, 123 Huntington Street, New Haven, CT, 06504, USA

3. Department of Forestry and Horticulture, The Connecticut Agricultural Experiment Station, P.O. Box 1106, 123 Huntington Street, New Haven, CT, 06504, USA

4. United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol & Behavior Laboratory, BARC-West, Building 007, 10300, Baltimore Avenue, Beltsville, MD, 20705, USA

Abstract

Abstract Integrated tick management (ITM) is a comprehensive strategy used to reduce presence of ticks and their associated pathogens. Such strategies typically employ a combination of host and non-host targeted treatments which often include fipronil-based, rodent-targeted bait boxes. Bait boxes target small-bodied rodents, specifically white-footed mice (Peromyscus leucopus Rafinesque) that not only play a crucial role in the blacklegged tick (Ixodes scapularis Say (Ixodida: Ixodidae)) life cycle, but also in the transmission of numerous pathogens, primarily Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner (Spirochaetales: Spirochaetaceae), the causal agent of Lyme disease. This study aimed to determine the effect of bait box deployment configuration on tick burden reduction while also further exploring bait consumption and P. leucopus abundances as measures of bait box usage and effectiveness. Boxes were deployed on nine properties within each of six neighborhoods (n = 54) in two different configurations: grid and perimeter. Multiple factors were analyzed as potential predictors for reduction in tick burdens using a backward stepwise selection procedure. Results confirmed the perimeter configuration was a more effective deployment strategy. In addition, overall P. leucopus abundance was a significant predictor of tick burden reduction while bait consumption was not. These findings not only further support the recommended perimeter deployment configuration but provide insight into effective utilization in areas of high P. leucopus abundance. The identification of this significant relationship, in addition to configuration, can be utilized by vector control professionals and homeowners to make informed decisions on bait box placement to make sustained impacts on the I. scapularis vector and associated pathogens within an ITM framework.

Funder

United States Department of Agriculture

Non-Assistance Cooperative Agreement

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3