Understanding Mosquito Surveillance Data for Analytic Efforts: A Case Study

Author:

Brown Heidi E1ORCID,Sedda Luigi2,Sumner Chris3,Stefanakos Elene3,Ruberto Irene4,Roach Matthew5

Affiliation:

1. Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA

2. Lancaster Medical School, Lancaster University, Bailrigg Campus, Lancaster, UK

3. Yuma County Pest Abatement District, Somerton, AZ, USA

4. Arizona Department of Health Services, Office of Infectious Disease Services, Phoenix, AZ, USA

5. Arizona Department of Health Services, Office of Environmental Health, Phoenix, AZ, USA

Abstract

Abstract Mosquito surveillance data can be used for predicting mosquito distribution and dynamics as they relate to human disease. Often these data are collected by independent agencies and aggregated to state and national level portals to characterize broad spatial and temporal dynamics. These larger repositories may also share the data for use in mosquito and/or disease prediction and forecasting models. Assumed, but not always confirmed, is consistency of data across agencies. Subtle differences in reporting may be important for development and the eventual interpretation of predictive models. Using mosquito vector surveillance data from Arizona as a case study, we found differences among agencies in how trapping practices were reported. Inconsistencies in reporting may interfere with quantitative comparisons if the user has only cursory familiarity with mosquito surveillance data. Some inconsistencies can be overcome if they are explicit in the metadata while others may yield biased estimates if they are not changed in how data are recorded. Sharing of metadata and collaboration between modelers and vector control agencies is necessary for improving the quality of the estimations. Efforts to improve sharing, displaying, and comparing vector data from multiple agencies are underway, but existing data must be used with caution.

Funder

Centers for Disease Control and Prevention

Implementing Health Adaptations

Environmental Public Health Tracking Network

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3