Bone mesenchymal stem cells improve cholestatic liver fibrosis by targeting ULK1 to regulate autophagy through PI3K/AKT/mTOR pathway

Author:

Huang Tingjuan12,Zhang Chunhong1,Shang Ziyi1,Shuai Qizhi12,Nie Lina1,Ren Junjie3,Hou Shulin12,Xie Jun12ORCID

Affiliation:

1. Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University , Taiyuan, 030001 Shanxi , China

2. Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University , Taiyuan, 030001 Shanxi , China

3. Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University , Taiyuan, 030001 Shanxi , China

Abstract

Abstract Cholestatic liver disease (CLD) is a severe disease, which can progress to liver cirrhosis, even liver cancer. Hepatic stellate cells (HSCs) activation plays a crucial role in CLD development. Bone mesenchymal stem cells (BMSCs) treatment was demonstrated to be beneficial in liver diseases. However, the therapeutic effect and mechanism of BMSCs on CLD are poorly known. In the present study, we investigated the therapeutic effects and underlying mechanisms of BMSCs transplantation in mouse models of bile duct ligation-induced cholestatic liver fibrosis (CLF). The results revealed that BMSCs significantly improved liver function and reduced the formation of fibrosis after portal vein transplantation. Mechanistically, after coculturing BMSCs and HSCs, we identified that BMSCs alleviated starvation-induced HSCs activation. Further, BMSCs inhibited HSCs activation by decreasing autophagy, and PI3K/AKT/mTOR pathway was involved in the regulation. More importantly, ULK1 is identified as the main autophagy-related gene regulated by BMSCs in HSCs autophagy. Overexpression of ULK1 reversed the suppression of HSCs autophagy by BMSCs. Collectively, our results provide a theoretical basis for BMSCs targeting ULK1 to attenuate HSCs autophagy and activation and suggest that BMSCs or ULK1 may be an alternative therapeutic approach/target for the treatment of CLF.

Funder

Fundamental Research Program of Shanxi Province

Research Fund for the Doctor Program of Shanxi Province

Shanxi Medical University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3