Incorporating Combinatorial Approaches to Encourage Targeted Neural Stem/Progenitor Cell Integration Following Transplantation in Spinal Cord Injury

Author:

Pieczonka Katarzyna12,Fehlings Michael G123ORCID

Affiliation:

1. Division of Genetics and Development, Krembil Brain Institute, University Health Network , Toronto, ON , Canada

2. Institute of Medical Science, Faculty of Medicine, University of Toronto , Toronto, ON , Canada

3. Division of Neurosurgery and Spinal Program, Department of Surgery, University of Toronto , Toronto, ON , Canada

Abstract

AbstractSpinal cord injury (SCI) severely diminishes quality of life and presents patients with a substantial financial burden. The lack of a curative treatment has guided efforts toward identifying potential regenerative treatments. Neural stem/progenitor cell (NSPC) transplantation represents a promising strategy for the regeneration of the injured spinal cord due to the ability of these cells to replace neural cells lost post-injury. However, the transplant-derived oligodendrocytes and neurons need to be able to associate and integrate within the appropriate endogenous circuits to guarantee optimal functional recovery. To date, the integration of these transplant-derived cells has lacked specificity and remains a challenge. As such, it appears that the transplanted cells will require additional guidance cues to instruct the cells where to integrate. In the present review, we propose a variety of combinatorial techniques that can be used in conjunction with NSPC transplantation to direct the cells toward particular circuits of interest. We begin by introducing distinct molecular signatures that assist in the formation of specific circuits during development, and highlight how favorable molecular cues can be incorporated within the cells and their environment to guide the grafted cells. We also introduce alternative methods including task-specific rehabilitation, galvanotaxis, and magnet-based tools, which can be applied to direct the integration of the grafted cells toward the stimulated circuits. Future research examining these combinatorial efforts may serve to improve outcomes following SCI.

Funder

CIHR Canada Graduate Scholarships Doctoral Research Award

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3