SAHA Enhances Differentiation of CD34+CD45+ Hematopoietic Stem and Progenitor Cells from Pluripotent Stem Cells Concomitant with an Increase in Hemogenic Endothelium

Author:

Shim Seon-Hui1ORCID,Tufa Dejene1,Woods Renee1,George Trahan D1,Shank Tyler1ORCID,Yingst Ashley1,Lake Jessica1,Cobb Laura1,Jones Dallas1,Jones Kenneth2,Verneris Michael R1

Affiliation:

1. University of Colorado and Children’s Hospital of Colorado, Department of Children’s Cancer and Blood Disorders , Aurora, CO , USA

2. Department of Cell Biology, University of Oklahoma School of Medicine , Oklahoma City, OK , USA

Abstract

Abstract Epigenetic modification is an important process during hematopoietic cell differentiation. Histone deacetylase (HDAC) inhibitors have previously been shown to enhance expansion of umbilical cord blood-derived hematopoietic stem cells (HSCs). However, the effect of HDAC inhibitors on pluripotent stem cells (PSCs) in this context is less understood. For years, investigators have considered PSC-derived natural killer (NK) and T-cell therapies. These “off-the-shelf” cellular therapies are now entering the clinic. However, the in vitro commitment of PSCs to the hematopoietic lineage is inefficient and represents a major bottleneck. We investigated whether HDAC inhibitors (HDACi) influence human PSC differentiation into CD34+CD45+ hematopoietic stem and progenitor cells (HSPCs), focusing on hemogenic endothelium (HE). Pluripotent stem cells cultured in the presence of HDACi showed a 2-5 times increase in HSPCs. Concurrent with this, HDACi-treated PSCs increased expression of 7 transcription factors (HOXA5, HOXA9, HOXA10, RUNX1, ERG, SPI1, and LCOR) recently shown to convert HE to HSPCs. ChIP-qPCR showed that SAHA upregulated acetylated-H3 at the promoter region of the above key genes. SAHA-treated human PSC-derived CD34+CD45+ cells showed primary engraftment in immunodeficient mice, but not serial transplantation. We further demonstrate that SAHA-derived HSPCs could differentiate into functional NK cells in vitro. The addition of SAHA is an easy and effective approach to overcoming the bottleneck in the transition from PSC to HSPCs for “off-the-shelf” cellular immunotherapy.

Funder

Gates Center Grubstake Grant

NIH

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3