The ultraviolet colour component enhances the attractiveness of red flowers of a bee-pollinated plant

Author:

Chen Zhe12,Liu Chang-Qiu3,Sun Hang1,Niu Yang1

Affiliation:

1. CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Center for Gardens and Horticultural Studies, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, Guangxi, China

Abstract

Abstract Aims Bee-pollinated flowers are rarely red, presumably because bees (which lack red receptors) have difficulty detecting red targets. Although the response of bees to red colour has been investigated in lab experiments, most stimuli have been pure red, while the subtle diversity of red as perceived by humans (human-red) has received very limited attention. Here we test the hypothesis that ultraviolet (UV) reflected from human-red flowers enhances their attractiveness to bees, through increased chromatic contrast. Methods Using Onosma confertum (Boraginaceae), a plant with UV-reflecting red flowers that are pollinated by bumblebees, we investigated the effects of UV reflection on pollinator responses by conducting phenotypic manipulation experiments in the field. Colour preferences of flower-naïve bumblebees were also examined. Colour perception by bumblebees was estimated in terms of chromatic and achromatic contrast, based on two different colour perception models. Important Findings We found that both natural and flower-naïve bumblebees strongly preferred visiting UV-reflecting targets compared with UV-absorbing ones. Colour models show that the UV-reflecting flowers exhibit higher spectral purity and higher chromatic contrast against the foliage background, whereas they have similar achromatic contrast in terms of green receptor contrast. These results indicate that the component of UV reflection increases chromatic contrast in O. confertum, enhancing the visual attractiveness of these red flowers to bumblebees. We further infer that the secondary reflectance might be a necessary component in human-red flowers that are primarily pollinated by animals without red receptors, such as bees.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research

Ministry of Science and Technology of the People’s Republic of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Yunnan Ten Thousand Talents Plan Young & Elite Talents Project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3