Population turnover promotes fungal stability in a semi-arid grassland under precipitation shifts

Author:

Wang Nannan123,Li Lei13,Zhang Bingwei4ORCID,Chen Shiping1,Sun Wei5,Luo Yukun6,Dong Kuanhu6,Han Xingguo13,Huang Jianhui13,Xu Xiaofeng2,Wang Changhui1

Affiliation:

1. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China

2. Biology Department, San Diego State University, San Diego, CA, USA

3. University of Chinese Academy of Sciences, Beijing, China

4. Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China

5. Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin, China

6. College of Grassland Science, Shanxi Agricultural University, Taigu, Shanxi, China

Abstract

Abstract Aims Bacteria and fungi are two primary groups of soil microbes, and their stability determines the persistence of microbial functions in response to a changing environment. Recent studies reported higher fungal than bacterial stability under precipitation alteration, the underlying mechanisms, however, remain elusive. Methods A 3-year precipitation manipulation experiment in a semi-arid grassland was used to compare the bacterial and fungal diversities, including alpha diversity, beta diversity and microbial community composition turnover, in response to precipitation manipulations. A framework is proposed to understand the stability properties of bacteria and fungi under precipitation alteration. We conceived a diagrammatic valley to illustrate microbial stability with the depth representing resistance and the width ecological resilience. Important Findings We found that ±60% in precipitation significantly reduced the richness and increased the evenness of bacteria but had trivial impacts on fungi. Precipitation alteration yielded stronger impacts on the variation in alpha diversity of bacteria than fungi, suggesting that the bacterial community is more sensitive to water stress than the fungal community. Moreover, fungi had wider composition turnover than that of bacteria, indicating higher composition variation of fungi than bacteria. The population turnover of fungi, reflected by composition variation, coefficient variation of diversity index and composition turnover, was larger than that of bacteria at both temporal and spatial scales, indicating the population turnover promotes fungal stability. The higher stability of fungal community in tolerating water stress is analogous to a ball in a wide valley that swing substantially but remain close to its steady state; while the lower stability of bacteria community is analogous to a ball that swings slightly but stay far away from its steady state. Our finding that the fungal community had higher stability than bacterial community in a semi-arid grassland might be applicable to other biomes.

Funder

Chinese National Key Development Program for Basic Research

National Natural Science Foundation of China

Chinese Academy of Sciences

Key Laboratory of Vegetation Ecology, Ministry of Education

San Diego State University

CSU Program for Education & Research in Biotechnology

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3