Temporal variation and its drivers in the elemental traits of four boreal plant species

Author:

Richmond Isabella C1ORCID,Leroux Shawn J1,Heckford Travis R1,Vander Wal Eric1,Rizzuto Matteo1ORCID,Balluffi-Fry Juliana1,Kennah Joanie L1,Wiersma Yolanda F1

Affiliation:

1. Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada

Abstract

AbstractAimsIntraspecific variation in plant traits has important consequences for individual fitness and herbivore foraging. For plants, trait variability across spatial dimensions is well documented. However, temporal dimensions of trait variability are less well known, and may be influenced by seasonal differences in growing degree days (GDD), temperature and precipitation. Here, we aim to quantify intraspecific temporal variation in traits and the underlying drivers for four commonly occurring boreal plant species.MethodsWe sampled the elemental and stoichiometric traits (%C, %N, %P, C:N, C:P, N:P) of four common browse species’ foliage across 2 years. Using a two-step approach, we first fitted generalized linear models (GzLM, n = 24) to the species’ elemental and stoichiometric traits, and tested if they varied across years. When we observed evidence for temporal variability, we fitted a second set of GzLMs (n = 8) with temperature, productivity and moisture as explanatory variables.Important FindingsWe found no evidence of temporal variation for most of the elemental and stoichiometric traits of our four boreal plants, with two exceptions. Year was an important predictor for percent carbon across all four species (R2 = 0.47–0.67) and for multiple elemental and stoichiometric traits in balsam fir (5/8, R2 = 0.29–0.67). Thus, variation in percent carbon was related to interannual differences, more so than nitrogen and phosphorus, which are limiting nutrients in the boreal forest. These results also indicate that year may explain more variation in conifers’ stoichiometry than for deciduous plants due to life history differences. GDD was the most frequently occurring variable in the second round of models (8/8 times, R2 = 0.21–0.41), suggesting that temperature is an important driver of temporal variation in these traits.

Funder

Government of Newfoundland and Labrador Centre for Forest Science Innovation

Memorial University of Newfoundland SEEDS

Mitacs Accelerate Grant

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3