Responses of soil labile organic carbon and water-stable aggregates to reforestation in southern subtropical China

Author:

Chen Yuanqi12ORCID,Zhang Yu3,Yu Shiqin2,Li Feng2,Liu Suping2,Zhou Lixia2,Fu Shenglei4

Affiliation:

1. Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan, China

2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China

3. Hunan Province Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China

4. Key Laboratory of Geospatial Technology for the Middle & Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, Henan, China

Abstract

Abstract Aims Reforestation can enhance soil carbon (C) stability and promote soil C accumulation. Experimental results are, however, highly variable, and the efficacy of reforestation in enhancing soil C stability is still in debate. Consequently, it remains unclear how the different soil C pools respond to reforestation in forest ecosystems. Methods The response of different soil C fractions to reforestation was examined in five subtropical forests, including the plantations of Eucalyptus urophylla (EU), Acacia crassicarpa (AC), Castanopsis hystrix (CH) and 10 species mixed (MX), and a naturally recovered shrubland (NS). Soil labile C fractions (readily oxidized organic C by KMnO4: ROC; dissolved organic C: DOC), distribution of aggregate-size classes and aggregate-associated C from different soil layers (0–10, 10–20, 20–40 and 40–60 cm) were evaluated. Important Findings We found that reforestation and forest type did not affect ROC concentration, yet the highest DOC concentration was detected in NS at four soil layers. Aggregate C concentration was the highest in all aggregate-size classes of CH at 0–10 cm depth. In addition, forest type did not alter the proportion of soil water-stable aggregates at four soil layers. However, soil depths significantly affected the distribution of soil aggregates with >0.25 mm aggregates dominating in the topsoils (0–20 cm), but 0.053–2 mm aggregates being dominant in the deep soils (20–60 cm). These results indicate that reforestation and forest type affected soil DOC (0–60 cm) and aggregate C (0–10 cm). Furthermore, soil DOC and aggregate C were more susceptive to reforestation than ROC. The findings suggest that plantations reduce soil DOC concentration, highlighting that C leaching loss may decrease compared with natural recovery. Moreover, C. hystrix plantation may enhance soil C stability by physical protection in topsoil. This study provides valuable information on tree species selection for reforestation concerning soil C sequestration in southern subtropical China.

Funder

National Natural Science Foundation of China

Joint Funds of National Natural Science Foundation of China and Henan Province of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3