Insights into the Decontamination of Cocaine-Positive Hair Samples

Author:

Erne Robert1,Baumgartner Markus R1,Kraemer Thomas1

Affiliation:

1. Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine (ZIFM), University of Zurich, Winterthurerstrasse 190/52, CH-8057, Zurich, Switzerland

Abstract

Abstract A highly discussed step in hair sample preparation for forensic analytics is the applied decontamination. The here presented investigations aim to gain insight and give recommendations on how to conduct this decontamination for the analysis of cocaine consumption in hair. Key insights were gained from the investigation of cocaine consumer hair, which was artificially contaminated in a humid atmosphere with 13C6 labelled cocaine and from cocaine powder contaminated hair. Several decontamination protocols were investigated, whereby the usage of a decontamination protocol consisting of multiple short repetitive washes allowed to visualize the wash out of (13C6-) cocaine. Multiple methanol washes proved to be an efficient and simple decontamination approach. Our findings showed that decontamination protocols can successfully wash out recent cocaine contaminations. They were observed to be rather quickly washed out, whereas cocaine from consumption or “older” cocaine contaminations were shown to eliminate both at a constant rate (from inner hair compartments). Thus, the usage of decontamination protocols to differentiate between consumption and contamination was shown to be limited. As contamination can happen any time at any level, only the application of elaborated decision trees, based on cocaine metabolite ratios and thresholds, can provide the distinction between consumption and contamination. Thus, the authors highly recommend the usage of such tools on all hair samples analyzed for cocaine consumption.

Funder

Universität Zürich

Publisher

Oxford University Press (OUP)

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology,Environmental Chemistry,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3