Structure Elucidation of Urinary Metabolites of Fentanyl and Five Fentanyl Analogs using LC-QTOF-MS, Hepatocyte Incubations and Synthesized Reference Standards

Author:

Wallgren Jakob1,Vikingsson Svante23,Rautio Tobias1,Nasr Enas1,Åstrand Anna2,Watanabe Shimpei3,Kronstrand Robert23,Gréen Henrik23,Dahlén Johan1,Wu Xiongyu1,Konradsson Peter1

Affiliation:

1. Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden

2. Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping 58185, Sweden

3. Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping 58758, Sweden

Abstract

Abstract Fentanyl analogs constitute a particularly dangerous group of new psychoactive compounds responsible for many deaths around the world. Little is known about their metabolism, and studies utilizing liquid chromatography–quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) analysis of hepatocyte incubations and/or authentic urine samples do not allow for determination of the exact metabolite structures, especially when it comes to hydroxylated metabolites. In this study, seven motifs (2-, 3-, 4- and β-OH as well as 3,4-diOH, 4-OH-3-OMe and 3-OH-4-OMe) of fentanyl and five fentanyl analogs, acetylfentanyl, acrylfentanyl, cyclopropylfentanyl, isobutyrylfentanyl and 4F-isobutyrylfentanyl were synthesized. The reference standards were analyzed by LC–QTOF-MS, which enabled identification of the major metabolites formed in hepatocyte incubations of the studied fentanyls. By comparison with our previous data sets, major urinary metabolites could tentatively be identified. For all analogs, β-OH, 4-OH and 4-OH-3-OMe were identified after hepatocyte incubation. β-OH was the major hydroxylated metabolite for all studied fentanyls, except for acetylfentanyl where 4-OH was more abundant. However, the ratio 4-OH/β-OH was higher in urine samples than in hepatocyte incubations for all studied fentanyls. Also, 3-OH-4-OMe was not detected in any hepatocyte samples, indicating a clear preference for the 4-OH-3-OMe, which was also found to be more abundant in urine compared to hepatocytes. The patterns appear to be consistent across all studied fentanyls and could serve as a starting point in the development of methods and synthesis of reference standards of novel fentanyl analogs where nothing is known about the metabolism.

Funder

Strategiområdet Forensiska Vetenskaper

Swedish Governmental Agency for Innovation Systems

European Union

Publisher

Oxford University Press (OUP)

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology,Environmental Chemistry,Analytical Chemistry

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3