Nest-Site Reuse Patterns for a Cavity-Nesting Bird Community in Interior British Columbia

Author:

Aitken K. E H.1,Wiebe K. L.2,Martin K.13

Affiliation:

1. Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver,British Columbia V6T 1Z4, Canada

2. Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada

3. Canadian Wildlife Service, 5421 Robertson Road, RR1, Delta, British Columbia V4K 3N2, Canada

Abstract

Abstract Most obligate cavity-nesting birds are considered to be nest-site limited, either by time or energy to excavate or to acquire suitable holes for nesting. We examined rates of nest-cavity reuse for a rich community of cavity-nesting birds in mixed forests in interior British Columbia. Using a sample of 402 cavity-reuse cases over five years, we measured cavity reuse for 20 cavity-nesting bird and mammal species (three guilds), and examined the relationship between nest-cavity reuse and features of cavities, nest trees, and forest stands. Eight percent of used cavities were destroyed between years. Reuse rates were 17% for the cavities of weak excavators such as nuthatches and chickadees, 28% for formerly active woodpecker nests, and 48% for cavities previously used by secondary cavity nesting birds, but there was considerable species variation within all guilds. Nest cavities in aspen that were deep with large entrances had the highest reuse. At the forest stand level, cavities in trees close to edges and in sites with more edge habitat had greater reuse. Reused cavities tended to be occupied in sequential years rather than being inactive for a year. With increasing amounts of managed landscapes, availability of suitable cavities for forest nesting vertebrates is decreasing. Reuse of existing cavities might help mitigate the problem of nest-site limitation.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3