Affiliation:
1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
3. Department of Chemistry, Fudan University, Shanghai 200433, China
Abstract
Abstract
N-containing organic compounds are of vital importance to lives. Practical synthesis of valuable N-containing organic compounds directly from dinitrogen (N2), not through ammonia (NH3), is a holy-grail in chemistry and chemical industry. An essential step for this transformation is the functionalization of the activated N2 units/ligands to generate N−C bonds. Pioneering works of transition metal-mediated direct conversion of N2 into organic compounds via N−C bond formation at metal-dinitrogen [N2-M] complexes have generated diversified coordination modes and laid the foundation of understanding for the N−C bond formation mechanism. This review summarizes those major achievements and is organized by the coordination modes of the [N2-M] complexes (end-on, side-on, end-on-side-on, etc.) that are involved in the N−C bond formation steps, and each part is arranged in terms of reaction types (N-alkylation, N-acylation, cycloaddition, insertion, etc.) between [N2-M] complexes and carbon-based substrates. Additionally, earlier works on one-pot synthesis of organic compounds from N2 via ill-defined intermediates are also briefed. Although almost all of the syntheses of N-containing organic compounds via direct transformation of N2 so far in the literature are realized in homogeneous stoichiometric thermochemical reaction systems and are discussed here in detail, the sporadically reported syntheses involving photochemical, electrochemical, heterogeneous thermo-catalytic reactions, if any, are also mentioned. This review aims to provide readers with an in-depth understanding of the state-of-the-art and perspectives of future research particularly in direct catalytic and efficient conversion of N2 into N-containing organic compounds under mild conditions, and to stimulate more research efforts to tackle this long-standing and grand scientific challenge.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献