Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density

Author:

Wang Zhiqiang12,Wang Da2,Zou Zheyi2,Song Tao2,Ni Dixing1,Li Zhenzhu3,Shao Xuecheng4,Yin Wanjian3,Wang Yanchao4,Luo Wenwei1,Wu Musheng1,Avdeev Maxim56,Xu Bo1,Shi Siqi27,Ouyang Chuying1,Chen Liquan8

Affiliation:

1. Department of Physics, Laboratory for Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China

2. State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

3. Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

4. State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

5. Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia

6. School of Chemistry, University of Sydney, Sydney 2006, Australia

7. Materials Genome Institute, Shanghai University, Shanghai 200444, China

8. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Abstract Designing new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference36 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3