Paving the road toward the use of β-Fe2O3 in solar water splitting: Raman identification, phase transformation and strategies for phase stabilization

Author:

Zhang Ningsi1,Wang Xin1,Feng Jianyong1,Huang Huiting1,Guo Yongsheng1,Li Zhaosheng12ORCID,Zou Zhigang12

Affiliation:

1. Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

2. Jiangsu Key Laboratory of Nano Technology, Nanjing University, Nanjing 210093, China

Abstract

Abstract Although β-Fe2O3 has a high theoretical solar-to-hydrogen efficiency because of its narrow band gap, the study of β-Fe2O3 photoanodes for water splitting is elusive as a result of their metastable nature. Raman identification of β-Fe2O3 is theoretically and experimentally investigated in this study for the first time, thus clarifying the debate about its Raman spectrum in the literature. Phase transformation of β-Fe2O3 to α-Fe2O3 was found to potentially take place under laser and electron irradiation as well as annealing. Herein, phase transformation of β-Fe2O3 to α-Fe2O3 was inhibited by introduction of Zr doping, and β-Fe2O3 was found to withstand a higher annealing temperature without any phase transformation. The solar water splitting photocurrent of the Zr-doped β-Fe2O3 photoanode was increased by 500% compared to that of the pure β-Fe2O3 photoanode. Additionally, Zr-doped β-Fe2O3 exhibited very good stability during the process of solar water splitting. These results indicate that by improving its thermal stability, metastable β-Fe2O3 film is a promising photoanode for solar water splitting.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3