Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries

Author:

Yu Wen-Bei12,Hu Zhi-Yi13,Jin Jun14,Yi Min5,Yan Min1,Li Yu1,Wang Hong-En1,Gao Huan-Xin6,Mai Li-Qiang1,Hasan Tawfique2,Xu Bai-Xiang5,Peng Dong-Liang7,Van Tendeloo Gustaaf38,Su Bao-Lian19ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, University of Technology, Wuhan 430070, China

2. Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK

3. Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China

4. Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China

5. Institute of Materials Science, Technische Universität Darmstadt, Darmstadt 64287, Germany

6. Fundamental Research Department, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China

7. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China

8. Electron Microscopy for Materials Science, University of Antwerp, Antwerp B-2020, Belgium

9. Laboratory of Inorganic Materials Chemistry, University of Namur, Namur B-5000, Belgium

Abstract

Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Changjiang Scholars and Innovative Research Team in University

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3