Unleash electron transfer in C–H functionalization by mesoporous carbon-supported palladium interstitial catalysts

Author:

Zhao Xiaorui1,Cao Yueqiang2,Duan Linlin1,Yang Ruoou3,Jiang Zheng3,Tian Chao1,Chen Shangjun1,Duan Xuezhi2ORCID,Chen De4,Wan Ying1ORCID

Affiliation:

1. Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China

2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

3. Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

4. Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway

Abstract

Abstract The functionalization of otherwise unreactive C–H bonds adds a new dimension to synthetic chemistry, yielding useful molecules for a range of applications. Arylation has emerged as an increasingly viable strategy for functionalization of heteroarenes which constitute an important class of structural moieties for organic materials. However, direct bisarylation of heteroarenes to enable aryl-heteroaryl-aryl bond formation remains a formidable challenge, due to the strong coordination between heteroatom of N or S and transitional metals. Here we report Pd interstitial nanocatalysts supported on ordered mesoporous carbon as catalysts for a direct and highly efficient bisarylation method for five-membered heteroarenes that allows for green and mild reaction conditions. Notably, in the absence of any base, ligands and phase transfer agents, high activity (turn-over frequency, TOF, up to 107 h−1) and selectivity (>99%) for the 2,5-bisarylation of five-membered heteroarenes are achieved in water. A combination of characterization reveals that the remarkable catalytic reactivity here is attributable to the parallel adsorption of heteroarene over Pd clusters, which breaks the barrier to electron transfer in traditional homogenous catalysis and creates dual electrophilic sites for aryl radicals and adsorbate at C2 and C5 positions. The d-band filling at Pd sites shows a linear relationship with activation entropy and catalytic activity. The ordered mesopores facilitate the absence of a mass transfer effect. These findings suggest alternative synthesis pathways for the design, synthesis and understanding of a large number of organic chemicals by ordered mesoporous carbon supported palladium catalysts.

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3