Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation

Author:

Lu Xuanming1ORCID,Kanamori Kazuyoshi1,Nakanishi Kazuki23

Affiliation:

1. Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

2. Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan

3. Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan

Abstract

Abstract Hierarchically porous monoliths based on copper (Cu), cobalt (Co) and manganese (Mn) oxides with three-dimensionally (3D) interconnected macropores and open nanopores were prepared using metal bromides as precursors via a sol–gel process accompanied by phase separation. The difficulty of gelation for low-valence metal cation was overcome by introducing a highly electronegative Br atom near to the metal atom to control the rates of hydrolysis and polycondensation. The 3D interconnected macropores were obtained using appropriate polymers to induce phase separation. The domain sizes of macropores and skeletons can be controlled by reaction parameters such as concentration and/or average molecular weight of polymers, and the amount of hydrochloric acid. The crystalline metal oxide monoliths with their 3D interconnected macroporous structure preserved were obtained after heat treatment in air.

Funder

Grant-in-Aid

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3