Robust prediction of hourly PM2.5 from meteorological data using LightGBM

Author:

Zhong Junting12ORCID,Zhang Xiaoye13,Gui Ke1,Wang Yaqiang1,Che Huizheng1,Shen Xiaojing1,Zhang Lei1ORCID,Zhang Yangmei1,Sun Junying1,Zhang Wenjie1

Affiliation:

1. State Key Laboratory of Severe Weather and Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China

2. School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Abstract

Abstract Retrieving historical fine particulate matter (PM2.5) data is key for evaluating the long-term impacts of PM2.5 on the environment, human health and climate change. Satellite-based aerosol optical depth has been used to estimate PM2.5, but estimations have largely been undermined by massive missing values, low sampling frequency and weak predictive capability. Here, using a novel feature engineering approach to incorporate spatial effects from meteorological data, we developed a robust LightGBM model that predicts PM2.5 at an unprecedented predictive capacity on hourly (R2 = 0.75), daily (R2 = 0.84), monthly (R2 = 0.88) and annual (R2 = 0.87) timescales. By taking advantage of spatial features, our model can also construct hourly gridded networks of PM2.5. This capability would be further enhanced if meteorological observations from regional stations were incorporated. Our results show that this model has great potential in reconstructing historical PM2.5 datasets and real-time gridded networks at high spatial-temporal resolutions. The resulting datasets can be assimilated into models to produce long-term re-analysis that incorporates interactions between aerosols and physical processes.

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3