Efficient network immunization under limited knowledge

Author:

Liu Yangyang1,Sanhedrai Hillel2,Dong GaoGao3,Shekhtman Louis M24,Wang Fan2,Buldyrev Sergey V5,Havlin Shlomo2

Affiliation:

1. Department of Systems Science, National University of Defense Technology, Changsha 410073, China

2. Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel

3. Faculty of Science, Jiangsu University, Zhenjiang 212013, China

4. Network Science Institute, Northeastern University, Boston, MA 02115, USA

5. Department of Physics, Yeshiva University, New York, NY 10033, USA

Abstract

Abstract Targeted immunization of centralized nodes in large-scale networks has attracted significant attention. However, in real-world scenarios, knowledge and observations of the network may be limited, thereby precluding a full assessment of the optimal nodes to immunize (or quarantine) in order to avoid epidemic spreading such as that of the current coronavirus disease (COVID-19) epidemic. Here, we study a novel immunization strategy where only n nodes are observed at a time and the most central among these n nodes is immunized. This process can globally immunize a network. We find that even for small n (≈10) there is significant improvement in the immunization (quarantine), which is very close to the levels of immunization with full knowledge. We develop an analytical framework for our method and determine the critical percolation threshold pc and the size of the giant component P∞ for networks with arbitrary degree distributions P(k). In the limit of n → ∞ we recover prior work on targeted immunization, whereas for n = 1 we recover the known case of random immunization. Between these two extremes, we observe that, as n increases, pc increases quickly towards its optimal value under targeted immunization with complete information. In particular, we find a new general scaling relationship between |pc(∞) − pc(n)| and n as |pc(∞) − pc(n)| ∼ n−1exp(−αn). For scale-free (SF) networks, where P(k) ∼ k−γ, 2 < γ < 3, we find that pc has a transition from zero to nonzero when n increases from n = 1 to O(log N) (where N is the size of the network). Thus, for SF networks, having knowledge of  ≈log N nodes and immunizing the most optimal among them can dramatically reduce epidemic spreading. We also demonstrate our limited knowledge immunization strategy on several real-world networks and confirm that in these real networks, pc increases significantly even for small n.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Israel Science Foundation

joint China-Israel Science Foundation

NSF

BSF

BIU Center for Research in Applied Cryptography and Cyber Security

DTRA

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference48 articles.

1. The structure and function of complex networks;Newman;SIAM Rev,2003

2. Statistical mechanics of complex networks;Albert;Rev Mod Phys,2002

3. Complex Networks

4. Efficient immunization strategies for computer networks and populations;Cohen;Phys Rev Lett,2003

5. The hidden geometry of complex, network-driven contagion phenomena;Brockmann;Science,2013

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3