Prediction of giant and ideal Rashba-type splitting in ordered alloy monolayers grown on a polar surface

Author:

Chen Mingxing1ORCID,Liu Feng2

Affiliation:

1. Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), School of Physics and Electronics, Hunan Normal University, Changsha 410081, China

2. Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA

Abstract

Abstract A large and ideal Rashba-type spin-orbit splitting is desired for the applications of materials in spintronic devices and the detection of Majorana fermions in solids. Here, we propose an approach to achieve giant and ideal spin-orbit splittings through a combination of ordered surface alloying and interface engineering, that is, growing alloy monolayers on an insulating polar surface. We illustrate this unique strategy by means of first-principle calculations of buckled hexagonal monolayers of SbBi and PbBi supported on Al2O3(0001). Both systems display ideal Rashba-type states with giant spin-orbit splittings, characterized with energy offsets over 600 meV and momentum offsets over 0.3 Å−1, respectively. Our study thus points to an effective way of tuning spin-orbit splitting in low-dimensional materials to draw immediate experimental interest.

Funder

National Natural Science Foundation of China

Educational Commission of Hubei Province

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference51 articles.

1. Properties of a 2D electron gas with lifted spectral degeneracy;Bychkov;JETP Lett,1984

2. Tunable Rashba spin-orbit interaction at oxide interfaces;Caviglia;Phys Rev Lett,2010

3. Universal intrinsic spin Hall effect;Sinova;Phys Rev Lett,2004

4. Topological insulators and superconductors;Qi;Rev Mod Phys,2011

5. Electronic analog of the electro-optic modulator;Datta;Appl Phys Lett,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3