Dominant species play a leading role in shaping community stability in the northern Tibetan grasslands

Author:

Hou Ge12,Shi Peili12,Zhou Tiancai12,Sun Jian3,Zong Ning1,Song Minghua1ORCID,Zhang Xianzhou12

Affiliation:

1. Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , Beijing 100101 , China

2. College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100190 , China

3. State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China

Abstract

AbstractDominant species may strongly influence biotic conditions and interact with other species, and thus are important drivers of community dynamics and ecosystem functioning, particularly in the stressed environment of alpine grasslands. However, the effects of dominant species on the community stability of different ecosystems remain poorly understood. We examined the mechanisms underlying temporal stability (2014–2020 year) of aboveground productivity and community stability in four alpine grasslands (alpine meadow, alpine meadow steppe, alpine steppe and alpine desert steppe) of the northern Tibetan with different species composition and dominance. Our results showed that community stability was significantly higher in the alpine meadow than in the other three types of grasslands. This difference was mainly attributed to the higher compensatory effect and selection effect in the alpine meadows. Furthermore, dominant species strongly affected community stability by increasing dominant species stability and species asynchrony. However, species richness had little effect on community stability. Our findings demonstrate that dominant species, as foundation species, may play leading roles in shaping community stability in the alpine grasslands, highlighting the importance of conserving dominant species for stable ecosystem functioning in these fragile ecosystems under increasing environmental fluctuations.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3