Carbon–water coupling and its relationship with environmental and biological factors in a planted Caragana liouana shrub community in desert steppe, northwest China

Author:

Du Ling-Tong123,Ma Long-Long123ORCID,Pan Hai-Zhu123,Qiao Cheng-Long123,Meng Chen123,Wu Hong-Yue123,Tian Jing123,Yuan Hong-Yi123

Affiliation:

1. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University , Yinchuan 750021 , China

2. Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University , Yinchuan 750021 , China

3. School of Ecology Environment, Ningxia University , Yinchuan 750021 , China

Abstract

Abstract The carbon and water cycle, an important biophysical process of terrestrial ecosystems, is changed by anthropogenic revegetation in arid and semiarid areas. However, there is still a lack of understanding of the mechanisms of carbon and water coupling in intrinsic ecosystems in the context of human activities. Based on the CO2 and H2O flux measurements of the desert steppe with the planted shrub Caragana liouana, this study explored the carbon and water flux coupling of the ecosystem by analyzing the variations in gross primary productivity (GPP), evapotranspiration (ET) and water use efficiency (WUE) and discussing the driving mechanisms of biological factors. The seasonal variation in climate factors induced a periodic variation pattern of biophysical traits and carbon and water fluxes. The GPP and ET fluctuated in seasons, but the WUE was relatively stable in the growing season. The GPP, ET and WUE were significantly driven by global radiation (Rg), temperature (Ta and Ts), water vapor pressure deficit, leaf area index and plant water stress index (PWSI). However, Rg, temperature and PWSI were the most important factors regulating WUE. Rg and temperature directly affected WUE with a positive effect but indirectly inhibited WUE by rising PWSI. Plant water stress inhibited photosynthesis and transpiration of the planted shrub community in the desert steppe. When the plant water stress exceeded a threshold (PWSI >0.54), the WUE would decrease since the GPP responded more quickly to the plant water stress than ET. Our findings suggest that policies related to large-scale carbon sequestration initiatives under afforestation must first fully consider the status of water consumption and WUE.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningxia Province

Excellent Talents Support Program of Ningxia Province

Key Research and Development Program of Ningxia Province

Special Plan for Local Sci-Tech Development Guided by the Central Government of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3