Community-level predictions in a megadiverse hotspot: comparison of stacked species distribution models to forest inventory data

Author:

Zwiener Victor Pereira1ORCID,Alves Valéria Andressa1ORCID

Affiliation:

1. Laboratório de Ecologia e Biogeografia de plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná , Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR , Brazil

Abstract

Abstract Given the current scenario of climate change and anthropogenic impacts, spatial predictions of biodiversity are fundamental to support conservation and restoration actions. Here, we compared different stacked species distribution models (S-SDMs) to forest inventories to assess if S-SDMs capture emerging properties and geographic patterns of species richness and composition of local communities in a biodiversity hotspot. We generated SDMs for 1499 tree species sampled in 151 sites across the Atlantic Forest. We applied four model stacking approaches to reconstruct the plant communities: binary SDMs (bS-SDMs), binary SDMs cropped by minimum convex polygons (bS-SDMs-CROP), stacked SDMs constrained by the observed species richness (cS-SDMs) and minimum convex polygons of species occurrences (MCPs). We compared the stacking methods with local communities in terms of species richness, composition, community prediction metrics and components of beta diversity—nestedness and turnover. S-SDMs captured general patterns, with bS-SDMs-CROP being the most parsimonious approach. Species composition differed between local communities and all stacking methods, in which bS-SDMs, bS-SDMs-CROP and MCPs followed a nested pattern, whereas species turnover was most important in cS-SDMs. S-SDMs varied in terms of performance, omission and commission errors, leading to a misprediction of some vulnerable, endangered and critically endangered species. Despite differing from forest inventory data, S-SDMs captured part of the variation from local communities, representing the potential species pool. Our results support the use of S-SDMs to endorse biodiversity synthesis and conservation planning at coarse scales and warn of potential misprediction at local scales in megadiverse regions.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Evaluating predictive models of species’ distributions: criteria for selecting optimal models;Anderson;Ecol Model,2003

2. Uses and misuses of bioclimatic envelope modelling;Araújo;Ecology,2012

3. Standards for distribution models in biodiversity assessments;Araújo;Sci Adv,2019

4. Error and uncertainty in habitat models;Barry;J Appl Ecol,2006

5. The crucial role of the accessible area in ecological niche modeling and species distribution modeling;Barve;Ecol Model,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3