Arbuscular mycorrhizal fungi protect a subtropical tree species exposed to simulated acid rain by accelerating photosynthetic ability, antioxidant enzymes and osmolyte accumulation

Author:

Wang Yanhong1,Shao Changliang2,Qiu Yajing1,Yu Shuquan1,Xia Lina1,He Xiaobin1,Wu Aiping3,Zhang Naili4

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University , Hangzhou 311300, Zhejiang , China

2. National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences , Beijing 100081 , China

3. Ecology Department, College of Resources and Environment, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University , Changsha 410128, Hunan , China

4. The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University , Beijing 100083 , China

Abstract

Abstract Acid rain (AR), which occurs frequently in southern China, negatively affects the growth of subtropical tree species. Arbuscular mycorrhizal fungi (AMF) mitigate the detrimental effects induced by AR. However, the mechanisms by which AMF protect Zelkova serrata, an economically important tree species in southern China, from AR stress remain unclear. We conducted a greenhouse experiment in which Z. serrata plants were inoculated with AMF species Rhizophagus intraradices and Diversispora versiformis, either alone or as a mixed culture, or with a sterilized inoculum (negative control). The plants were subjected to three levels of simulated sulfuric AR and nitric AR (pH 2.5, 4.0 and 5.6) to examine any interactive effects on growth, photosynthetic capabilities, antioxidant enzymes, osmotic adjustment and soil enzymes. AR significantly decreased dry weight, chlorophyll content, net photosynthetic rate and soluble protein (SP) of non-mycorrhizal plants. Mycorrhizal inoculation, especially a combination of R. intraradices and D. versiformis, notably improved dry weight, photosynthetic capabilities, catalase, peroxidase, superoxide dismutase, SP and root acid phosphatase activity of Z. serrata under harsh AR stress. Moreover, the benefits from AMF symbionts depended on the identity of AM fungal species and the gradient of AR stress. Our results indicate that AM fungi protect Z. serrata against AR stress by synchronously activating photosynthetic ability, antioxidant enzymes and osmolyte accumulation. These findings suggest that a combination of R. intraradices and D. versiformis may be a preferable choice for culturing Z. serrata in southern China.

Funder

National Natural Science Foundation of China

Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Special Foundation for National Science and Technology Basic Research Program of China

Key Research and Development Plan of Zhejiang Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3