The effect of stress changes on time-dependent earthquake probabilities for the central Wasatch Fault Zone, Utah, USA.

Author:

Verdecchia A12,Carena S2,Pace B3,DuRoss C B4

Affiliation:

1. Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, Germany

2. Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germany

3. DiSPUTer, Universita' G. d'Annunzio di Chieti-Pescara, Chieti, Italy

4. U.S. Geological Survey, 1711 Illinois Street, Golden, Colorado, 80401

Abstract

Summary Static and quasi-static Coulomb stress changes produced by large earthquakes can modify the probability of occurrence of subsequent events on neighboring faults. This approach is based on physical (Coulomb stress changes) and statistical (probability calculations) models, which are influenced by the quality and quantity of data available in the study region. Here, we focus on the Wasatch Fault Zone (WFZ), a well-studied active normal fault system having abundant geologic and paleoseismological data. Paleoseismological trench investigations of the WFZ indicate that at least 24 large, surface-faulting earthquakes have ruptured the fault's five central, 35–59-km long segments since ∼7 ka. Our goal is to determine if the stress changes due to the youngest paleoevents have significantly modified the present-day probability of occurrence of large earthquakes on each of the segments. For each segment, we modeled the cumulative (coseismic + postseismic) Coulomb stress changes (∆CFScum) due to earthquakes younger than the most recent event on the segment in question and applied the resulting values to the time-dependent probability calculations. Results from the Coulomb stress modeling suggest that the Brigham City, Salt Lake City, and Provo segments have accumulated ∆CFScum larger than 10 bars, whereas the Weber segment has experienced a stress decrease of 5 bars, in the scenario of recent rupture of the Great Salt Lake fault to the west. Probability calculations predict high probability of occurrence for the Brigham City and Salt Lake City segments, due to their long elapsed times (> 1–2 ka) when compared to the Weber, Provo, and Nephi segments (< 1 ka). The range of calculated coefficients of variation (CV) has a large influence on the final probabilities, mostly in the case of the Brigham City segment. Finally, when the Coulomb stress and the probability models are combined, our results indicate that the ∆CFScum resulting from earthquakes postdating the youngest events on each of the five segments substantially affects the probability calculations for three of the segments: Brigham City, Salt Lake City, and Provo. The probability of occurrence of a large earthquake in the next 50 years on these three segments may therefore be underestimated if a time-independent approach, or a time-dependent approach that does not consider ∆CFS, is adopted.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3