Rotating double-diffusive convection in stably stratified planetary cores

Author:

Monville R1,Vidal J12,Cébron D1,Schaeffer N1ORCID

Affiliation:

1. Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France

2. Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, LS29JT, UK

Abstract

SUMMARY In planetary fluid cores, the density depends on temperature and chemical composition, which diffuse at very different rates. This leads to various instabilities, bearing the name of double-diffusive convection (DDC). We investigate rotating DDC (RDDC) in fluid spheres. We use the Boussinesq approximation with homogeneous internal thermal and compositional source terms. We focus on the finger regime, in which the thermal gradient is stabilizing whereas the compositional one is destabilizing. First, we perform a global linear stability analysis in spheres. The critical Rayleigh numbers drastically drop for stably stratified fluids, yielding large-scale convective motions where local analyses predict stability. We evidence the inviscid nature of this large-scale double-diffusive instability, enabling the determination of the marginal stability curve at realistic planetary regimes. In particular, we show that in stably stratified spheres, the Rayleigh numbers Ra at the onset evolve like Ra ∼ Ek−1, where Ek is the Ekman number. This differs from rotating convection in unstably stratified spheres, for which Ra ∼ Ek−4/3. The domain of existence of inviscid convection thus increases as Ek−1/3. Secondly, we perform non-linear simulations. We find a transition between two regimes of RDDC, controlled by the strength of the stratification. Furthermore, far from the RDDC onset, we find a dominating equatorially antisymmetric, large-scale zonal flow slightly above the associated linear onset. Unexpectedly, a purely linear mechanism can explain this phenomenon, even far from the instability onset, yielding a symmetry breaking of the non-linear flow at saturation. For even stronger stable stratification, the flow becomes mainly equatorially symmetric and intense zonal jets develop. Finally, we apply our results to the early Earth core. Double diffusion can reduce the critical Rayleigh number by four decades for realistic core conditions. We suggest that the early Earth core was prone to turbulent RDDC, with large-scale zonal flows.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3