Estimating plume heights of explosive eruptions using high-frequency seismic amplitudes

Author:

Mori Azusa1ORCID,Kumagai Hiroyuki1

Affiliation:

1. Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601, Japan

Abstract

SUMMARY Seismic signals during explosive eruptions have been correlated to eruption size or eruption volume flux for individual eruptive episodes. However, the universality of these correlations has yet to be confirmed. We quantified the sources of high-frequency seismic signals associated with sub-Plinian and Vulcanian eruptions at Kirishima (Japan), Tungurahua (Ecuador) and other volcanoes in Japan using a simple approach based on highly scattered seismic waveform characteristics. We found that eruption plume heights scale to seismic source amplitudes and are described by two relations depending on the value of source amplitudes: power-law and exponential relations for plume height >6 km and <6 km, respectively. Though conceptually similar, our scaling relations differ from the previously proposed relation based on reduced displacement. By comparing seismic and geodetic data during sub-Plinian eruptions at Kirishima, we found that the source amplitude is proportional to eruption volume flux. Combining these relations, we show that our scaling relation for Plinian eruptions is consistent with predictions from plume dynamics models. We present a source model to explain the proportionality between the source amplitude and eruption volume flux assuming a vertical crack or a cylindrical conduit as the source. The source amplitude can be estimated in seconds without any complicated data processing, whereas eruption plumes take minutes to reach their maximum heights. Our results suggest that high-frequency seismic source amplitudes are useful for estimating plume heights in real time.

Funder

Japan Meteorological Agency

National Research Institute for Earth Science and Disaster Resilience

Earthquake Research Institute

University of Tokyo

MEXT

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3