Predicting fluid pressure in sedimentary basins from seismic tomography

Author:

O’Reilly Brian M12,Prada Manel12,Lavoué François12,Lebedev Sergei12

Affiliation:

1. Dublin Institute for Advanced Studies, Geophysics Section, 5 Merrion Square, Dublin 2, Ireland

2. Irish Centre for Research in Applied Geosciences, University College, Belfield, Dublin 4, Ireland

Abstract

SUMMARY Gravitational compaction of thick (2–10 km) sediment accumulations in sedimentary basins is controlled by the interplay of mechanical and chemical processes that operate over many orders of magnitude in spatial scale. The compaction of sediments into rock typically involves a density increase of ≈500 to 1000 kg m−3, occurring over a depth-scale of several kilometres. The volume decrease in the compacting sediments releases vast volumes of water, which plays an important part in the global hydrological cycle and also in tectonic and geochemical processes; including the formation of hydrocarbon and mineral deposits. This study utilizes recently developed tomographic seismic images from the Porcupine Basin, which lies in the deep-water North Atlantic Ocean. A generic method for predicting fluid pressure variations that are driven by gravitational compaction is developed over the scale of the entire sedimentary basin. The methodology is grounded upon both observational evidence and empirically based theories, relying on geophysical measurements and relationships between sediment porosities and densities. The method is based upon physical concepts that are widely used in the petroleum industry and applied extensively in models of overpressure development in sedimentary basins. Geological and geophysical data from exploration wells are used to test the predictions of the method at two locations within the basin and are found to be in good agreement with the theory.

Funder

Science Foundation Ireland

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3