SlDELLA interacts with SlPIF4 to regulate arbuscular mycorrhizal symbiosis and phosphate uptake in tomato

Author:

Li Lan1,Ge Shibei12,He Liqun1,Liu Ruicheng13,Mei Yuhong1,Xia Xiaojian14ORCID,Yu Jingquan14,Zhou Yanhong134

Affiliation:

1. Zhejiang University Department of Horticulture, Zijingang Campus, , 866 Yuhangtang Road, Hangzhou 310058, China

2. Chinese Academy of Agricultural Science Tea Research Institute, , Hangzhou 310008, China

3. Zhejiang University Hainan Institute, , Sanya 572025, China

4. Ministry of Agriculture and Rural Affairs of China Key Laboratory of Horticultural Plant Growth and Development, , Hangzhou 310058, China

Abstract

Abstract Arbuscular mycorrhizal symbiosis (AMS), a complex and delicate process, is precisely regulated by a multitude of transcription factors. PHYTOCHROME-INTERACTING FACTORS (PIFs) are critical in plant growth and stress responses. However, the involvement of PIFs in AMS and the molecular mechanisms underlying their regulator functions have not been well elucidated. Here, we show that SlPIF4 negatively regulates the arbuscular mycorrhizal fungi (AMF) colonization and AMS-induced phosphate uptake in tomato. Protein–protein interaction studies suggest that SlDELLA interacts with SlPIF4, reducing its protein stability and inhibiting its transcriptional activity towards downstream target genes. This interaction promotes the accumulation of strigolactones (SLs), facilitating AMS development and phosphate uptake. As a transcription factor, SlPIF4 directly transcriptionally regulates genes involved in SLs biosynthesis, including SlCCD7, SlCDD8, and SlMAX1, as well as the AMS-specific phosphate transporter genes PT4 and PT5. Collectively, our findings uncover a molecular mechanism by which the SlDELLA-SlPIF4 module regulates AMS and phosphate uptake in tomato. We clarify a molecular basis for how SlPIF4 interacts with SLs to regulate the AMS and propose a potential strategy to improve phosphate utilization efficiency by targeting the AMS-specific phosphate transporter genes PTs.

Funder

Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3