Chloroplast protein StFC-II was manipulated by a Phytophthora effector to enhance host susceptibility

Author:

Xu Meng123,Sun Xinyuan123,Wu Xinya123,Qi Yetong123,Li Hongjun123,Nie Jiahui123,Yang Zhu123,Tian Zhendong1423ORCID

Affiliation:

1. Huazhong Agricultural University (HZAU) National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, , Wuhan 430070 , China

2. Ministry of Agriculture and Rural Affairs Key Laboratory of Potato Biology and Biotechnology (HZAU), , Wuhan 430070 , China

3. Potato Engineering and Technology Research Center of Hubei Province (HZAU) , Wuhan 430070 , China

4. Hubei Hongshan Laboratory (HZAU) , Wuhan 430070 , China

Abstract

Abstract Oomycete secretes a range of RxLR effectors into host cells to manipulate plant immunity by targeting proteins from several organelles. In this study, we report that chloroplast protein StFC-II is hijacked by a pathogen effector to enhance susceptibility. Phytophthora infestans RxLR effector Pi22922 is activated during the early stages of P. infestans colonization. Stable overexpression of Pi22922 in plants suppresses flg22-triggered reactive oxygen species (ROS) burst and enhances leaf colonization by P. infestans. A potato ferrochelatase 2 (FC-II, a nuclear-encoded chloroplast-targeted protein), a key enzyme for heme biosynthesis in chloroplast, was identified as a target of Pi22922 in the cytoplasm. The pathogenicity of Pi22922 in plants is partially dependent on FC-II. Overexpression of StFC-II decreases resistance of potato and Nicotiana benthamiana against P. infestans, and silencing of NbFC-II in N. benthamiana reduces P. infestans colonization. Overexpression of StFC-II increases heme content and reduces chlorophyll content and photosynthetic efficiency in potato leaves. Moreover, ROS accumulation both in chloroplast and cytoplasm is attenuated and defense-related genes are down-regulated in StFC-II overexpression transgenic potato and N. benthamiana leaves. Pi22922 inhibits E3 ubiquitin ligase StCHIP-mediated StFC-II degradation in the cytoplasm and promotes its accumulation in chloroplasts. In summary, this study characterizes a new mechanism that an oomycete RxLR effector suppresses host defenses by promoting StFC-II accumulation in chloroplasts, thereby compromising the host immunity and promoting susceptibility.

Funder

National Natural Science Foundation of China for providing financial support

National Key R&D Program of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3