Regulatory role of Prunus mume DAM6 on lipid body accumulation and phytohormone metabolism in the dormant vegetative meristem

Author:

Hsiang Tzu-Fan1,Yamane Hisayo1ORCID,Gao-Takai Mei2,Tao Ryutaro1

Affiliation:

1. Kyoto University Graduate School of Agriculture, , Kyoto 606-8502, Japan

2. Ishikawa Prefectural University Experimental Farm, , Nonoichi 921-8836, Japan

Abstract

Abstract Bud dormancy is a crucial process in the annual growth cycle of woody perennials. In Rosaceae fruit tree species, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factor genes regulating bud dormancy have been identified, but their molecular roles in meristematic tissues have not been thoroughly characterized. In this study, molecular and physiological analyses of transgenic apple plants overexpressing the Japanese apricot DAM6 gene (PmDAM6) and Japanese apricot cultivars and F1 individuals with contrasting dormancy characteristics revealed the metabolic pathways controlled by PmDAM6. Our transcriptome analysis and transmission electron microscopy examination demonstrated that PmDAM6 promotes the accumulation of lipid bodies and inhibits cell division in the dormant vegetative meristem by down-regulating the expression of lipid catabolism genes (GDSL ESTERASE/LIPASE and OIL BODY LIPASE) and CYCLIN genes, respectively. Our findings also indicate PmDAM6 promotes abscisic acid (ABA) accumulation and decreases cytokinin (CTK) accumulation in vegetative buds by up-regulating the expression of the ABA biosynthesis gene ARABIDOPSIS ALDEHYDE OXIDASE and the CTK catabolism gene CYTOKININ DEHYDROGENASE, while also down-regulating the expression of the CTK biosynthesis genes ISOPENTENYL TRANSFERASE (IPT) and CYP735A. Additionally, PmDAM6 modulates gibberellin (GA) metabolism by up-regulating GA2-OXIDASE expression and down-regulating GA3-OXIDASE expression. Furthermore, PmDAM6 may also indirectly promote lipid accumulation and restrict cell division by limiting the accumulation of CTK and GA in buds. In conclusion, using our valuable genetic platform, we clarified how PmDAM6 modifies diverse cellular processes, including lipid catabolism, phytohormone (ABA, CTK, and GA) biosynthesis and catabolism, and cell division, in the dormant vegetative meristem.

Funder

Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science, Japan

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3