Phospholipid production and signaling by a plant defense inducer against Podosphaera xanthii is genotype-dependent

Author:

Margaritopoulou Theoni1,Baira Eirini2,Anagnostopoulos Christos3,Vichou Katerina-Eleni1,Markellou Emilia1

Affiliation:

1. Benaki Phytopathological Institute Laboratory of Mycology, Scientific Directorate of Phytopathology, , Kifissia 14561, Greece

2. Benaki Phytopathological Institute Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control & Phytopharmacy, , Kifissia 14561, Greece

3. Benaki Phytopathological Institute Laboratory of Pesticide Residues, Scientific Directorate of Pesticides' Control & Phytopharmacy, , Kifissia 14561, Greece

Abstract

Abstract Biotrophic phytopathogenic fungi such as Podosphaera xanthii have evolved sophisticated mechanisms to adapt to various environments causing powdery mildews leading to substantial yield losses. Today, due to known adverse effects of pesticides, development of alternative control means is crucial and can be achieved by combining plant protection products with resistant genotypes. Using plant defense inducers, natural molecules that stimulate plant immune system mimicking pathogen attack is sustainable, but information about their mode of action in different hosts or host genotypes is extremely limited. Reynoutria sachalinensis extract, a known plant defense inducer, especially through the Salicylic acid pathway in Cucurbitaceae crops against P. xanthii, was employed to analyze the signaling cascade of defense activation. Here, we demonstrate that R. sachalinensis extract enhances phospholipid production and signaling in a Susceptible to P. xanthii courgette genotype, while limited response is observed in an Intermediate Resistance genotype due to genetic resistance. Functional enrichment and cluster analysis of the upregulated expressed genes revealed that inducer application promoted mainly lipid- and membrane-related pathways in the Susceptible genotype. On the contrary, the Intermediate Resistance genotype exhibited elevated broad spectrum defense pathways at control conditions, while inducer application did not promote any significant changes. This outcome was obvious and at the metabolite level. Main factor distinguishing the Intermediate Resistance form the Susceptible genotype was the epigenetic regulated increased expression of a G3P acyltransferase catalyzing phospholipid production. Our study provides evidence on phospholipid-based signaling after plant defense inducer treatment, and the selective role of plant’s genetic background.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3