A nested reciprocal experimental design to map the genetic architecture of transgenerational phenotypic plasticity

Author:

Che Jincan1ORCID,Wang Yu1,Dong Ang2,Cao Yige1,Wu Shuang12,Wu Rongling123

Affiliation:

1. Beijing Forestry University Center for Computational Biology, College of Biological Sciences and Technology, , Beijing 100083, China

2. Beijing Institute of Mathematical Sciences and Applications , Beijing 101408, China

3. Tsinghua University Yau Mathematical Sciences Center, , Beijing 100084, China

Abstract

Abstract Extensive studies have revealed the ecological and evolutionary significance of phenotypic plasticity, but little is known about how it is inherited between generations and the genetic architecture of its transgenerational inheritance. To address these issues, we design a mapping study by growing Arabidopsis thaliana RILs in high- and low-light environments and further growing their offspring RILs from each maternal light environment in the same contrasting environments. This tree-like design of the controlled ecological experiment provides a framework for analysing the genetic regulation of phenotypic plasticity and its non-genetic inheritance. We implement the computational approach of functional mapping to identify specific QTLs for transgenerational phenotypic plasticity. By estimating and comparing the plastic response of leaf-number growth trajectories to light environment between generations, we find that the maternal environment affects phenotypic plasticity, whereas transgenerational plasticity is shaped by the offspring environment. The genetic architecture underlying the light-induced change of leaf number not only changes from parental to offspring generations, but also depends on the maternal environment the parental generation experienced and the offspring environment the offspring generation is experiencing. Most plasticity QTLs are annotated to the genomic regions of candidate genes for specific biological functions. Our computational-experimental design provides a unique insight into dissecting the non-genetic and genetic mechanisms of phenotypic plasticity shaping plant adaptation and evolution in various forms.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3