Dynamic temporal transcriptome analysis reveals grape VlMYB59-VlCKX4 regulatory module controls fruit set

Author:

Shi Qiaofang1,Li Xufei12,Yang Shengdi13,Zhao Xiaochun1,Yue Yihan1,Yang Yingjun1,Yu Yihe1ORCID

Affiliation:

1. Henan University of Science and Technology College of Horticulture and Plant Protection, , Luoyang 471023, Henan Province, China

2. Fujian Agriculture and Forestry University , Fuzhou 350002, Fujian Province, China

3. Hunan Agricultural University , Changsha 410128, Hunan Province, China

Abstract

Abstract Fruit set is a key stage in determining yield potential and guaranteeing quality formation and regulation. N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) has been widely applied in grape production, the most iconic of which is the promotion of grape fruit set. However, current studies still lack the molecular mechanism of CPPU-induced grape fruit set. Here, the dynamic, high-resolution stage-specific transcriptome profiles were generated based on two different treatments and five developmental periods during fruit set in ‘Kyoho’ grape (Vitis vinifera L. × V. labrusca L.). Pairwise comparison and functional category analysis showed that phytohormone action cytokinin was significantly enriched during the CPPU-induced grape fruit set, but not the natural one. Value differentially expressed gene (VDEG) was a newly proposed analysis strategy for mining genes related to the grape fruit set. Notably, the cytokinin metabolic process was significantly enriched among up-regulated VDEGs. Of importance, a key VDEG VlCKX4 related to the cytokinin metabolic process was identified as related to the grape fruit set. Overexpression of VlCKX4 gene promoted the Arabidopsis plants that produce more and heavier siliques. The transcription factor VlMYB59 directly bound to the promoter of VlCKX4 and activated its expression. Moreover, overexpression of VlMYB59 gene also promoted the Arabidopsis fruit set. Overall, VlMYB59 responded to CPPU treatment and directly activated the expression of VlCKX4, thus promoting the fruit set. A regulatory pathway of the VlMYB59-VlCKX4 module in the fruit set was uncovered, which provides important insights into the molecular mechanisms of the fruit set and good genetic resources for high fruit set rate breeding.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3