Affiliation:
1. Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen 91052, Bavaria, Germany
Abstract
AbstractGene fusion or co-immobilization are key tools to optimize enzymatic reaction cascades by modulating catalytic features, stability and applicability. Achieving a defined spatial organization between biocatalysts by site-specific applications is complicated by the involvement of oligomeric enzymes. It can lead to activity losses due to disturbances of the quaternary structures and difficulties in stoichiometric control. Thus, a toolkit of active and robust monomeric enzymes is desirable for such applications. In this study, we engineered one of the rare examples of monomeric alcohol dehydrogenases for improved catalytic characteristics by site-directed mutagenesis. The enzyme from the hyperthermophilic archaeon Thermococcus kodakarensis naturally exhibits high thermostability and a broad substrate spectrum, but only low activity at moderate temperatures. The best enzyme variants showed an ~5-fold (2-heptanol) and 9-fold (3-heptanol) higher activity while preserving enantioselectivity and good thermodynamic stability. These variants also exhibited modified kinetic characteristics regarding regioselectivity, pH dependence and activation by NaCl.
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Biochemistry,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献