The variable conversion of neutralizing anti-SARS-CoV-2 single-chain antibodies to IgG provides insight into RBD epitope accessibility

Author:

Chang Matthew R1ORCID,Ke Hanzhong12,Losada Miguéns Laura1,Coherd Christian1,Nguyen Katrina1,Kamkaew Maliwan1,Johnson Rebecca3,Storm Nadia3,Honko Anna3,Zhu Quan12,Griffiths Anthony3,Marasco Wayne A12

Affiliation:

1. Dana-Farber Cancer Institute Department of Cancer Immunology & Virology, , Boston, MA 02215, USA

2. Harvard Medical School Department of Medicine, , Boston, MA 02115, USA

3. Boston University School of Medicine Department of Virology, Immunology, and Microbiology and National Emerging Infectious Diseases Laboratories, , Boston, MA 02118, USA

Abstract

Abstract Monoclonal antibody (mAb) therapies have rapidly become a powerful class of therapeutics with applications covering a diverse range of clinical indications. Though most widely used for the treatment of cancer, mAbs are also playing an increasing role in the defense of viral infections, most recently with palivizumab for prevention and treatment of severe RSV infections in neonatal and pediatric populations. In addition, during the COVID-19 pandemic, mAbs provided a bridge to the rollout of vaccines; however, their continued role as a therapeutic option for those at greatest risk of severe disease has become limited due to the emergence of neutralization resistant Omicron variants. Although there are many techniques for the identification of mAbs, including single B cell cloning and immunization of genetically engineered mice, the low cost, rapid throughput and technological simplicity of antibody phage display has led to its widespread adoption in mAb discovery efforts. Here we used our 27-billion-member naïve single-chain antibody (scFv) phage library to identify a panel of neutralizing anti-SARS-CoV-2 scFvs targeting diverse epitopes on the receptor binding domain (RBD). Although typically a routine process, we found that upon conversion to IgG, a number of our most potent clones failed to maintain their neutralization potency. Kinetic measurements confirmed similar affinity to the RBD; however, mechanistic studies provide evidence that the loss of neutralization is a result of structural limitations likely arising from initial choice of panning antigen. Thus this work highlights a risk of scFv-phage panning to mAb conversion and the importance of initial antigen selection.

Funder

National Institute of Allergy and Infectious Diseases

Massachusetts Consortium on Pathogen Readiness

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3