Reducing substrate inhibition of malate dehydrogenase from Geobacillus stearothermophilus by C-terminal truncation

Author:

Shimozawa Yuya12ORCID,Matsuhisa Hinano3,Nakamura Tsutomu2,Himiyama Tomoki2ORCID,Nishiya Yoshiaki1

Affiliation:

1. Graduate School of Science and Engineering, Setsunan University Division of Life Science, , Osaka 572-8508, Japan

2. Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology , Osaka 563-8577, Japan

3. Setsunan University Department of Life Science, Faculty of Science and Engineering, , Osaka 572-8508, Japan

Abstract

Abstract Malate dehydrogenase (MDH) catalyzes the reduction of oxaloacetate to L-malate. Geobacillus stearothermophilus MDH (gs-MDH) is used as a diagnostic reagent; however, gs-MDH is robustly inhibited at high substrate concentrations, which limits its reaction rate. Here, we reduced substrate inhibition of gs-MDH by deleting its C-terminal residues. Computational analysis showed that C-terminal residues regulate the position of the active site loop. C-terminal deletions of gs-MDH successfully increased Ki values by 5- to 8-fold with maintained thermal stability (>90% of the wild-type enzyme), although kcat/Km values were decreased by <2-fold. The structure of the mutant showed a shift in the location of the active site loop and a decrease in its volume, suggesting that substrate inhibition was reduced by eliminating the putative substrate binding site causing inhibition. Our results provide an effective method to reduce substrate inhibition of the enzyme without loss of other parameters, including binding and stability constants.

Funder

Japan Society for the Promotion of Science KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3