Substitution of distal and active site residues reduces product inhibition of E1 from Acidothermus Cellulolyticus

Author:

Summers Samantha R1,Alamdari Sarah2,Kraft Casey J1,Brunecky Roman3,Pfaendtner Jim2,Kaar Joel L1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80309, USA

2. Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195-1750, USA

3. Biosciences Center, National Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401, USA

Abstract

Abstract Cellulases are largely afflicted by inhibition from their reaction products, especially at high-substrate loading, which represents a major challenge for biomass processing. This challenge was overcome for endoglucanase 1 (E1) from Acidothermus cellulolyticus by identifying a large conformational change involving distal residues upon binding cellobiose. Having introduced alanine substitutions at each of these residues, we identified several mutations that reduced cellobiose inhibition of E1, including W212A, W213A, Q247A, W249A and F250A. One of the mutations (W212A) resulted in a 47-fold decrease in binding affinity of cellobiose as well as a 5-fold increase in the kcat. The mutation further increased E1 activity on Avicel and dilute-acid treated corn stover and enhanced its productivity at high-substrate loadings. These findings were corroborated by funnel metadynamics, which showed that the W212A substitution led to reduced affinity for cellobiose in the +1 and +2 binding sites due to rearrangement of key cellobiose-binding residues.

Funder

National Science Foundation Graduate Research Fellowship Program

ORAU

Oak Ridge Institute for Science and Education

Office of Science Graduate Student Research

Office of Workforce Development for Teachers and Scientists

Office of Science

U.S. Department of Energy

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3