Production of a novel heterodimeric two-chain insulin-Fc fusion protein

Author:

Faust Christine1,Ochs Christian12,Korn Marcus3,Werner Ulrich3,Jung Jennifer1,Dittrich Werner1,Schiebler Werner2,Schauder Rolf2,Rao Ercole1,Langer Thomas1ORCID

Affiliation:

1. Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany

2. Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany

3. Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany

Abstract

AbstractInsulin is a peptide hormone produced by the pancreas. The physiological role of insulin is the regulation of glucose metabolism. Under certain pathological conditions the insulin levels can be reduced leading to the metabolic disorder diabetes mellitus (DM). For type 1 DM and, dependent on the disease progression for type 2 DM, insulin substitution becomes indispensable. To relieve insulin substitution therapy for patients, novel insulin analogs with pharmacokinetic and pharmacodynamic profiles aiming for long-lasting or fast-acting insulins have been developed. The next step in the evolution of novel insulins should be insulin analogs with a time action profile beyond 1–2 days, preferable up to 1 week.Nowadays, insulin is produced in a recombinant manner. This approach facilitates the design and production of further insulin-analogs or insulin-fusion proteins. The usage of the Fc-domain from immunoglobulin as a fusion partner for therapeutic proteins and peptides is widely used to extend their plasma half-life. Insulin consists of two chains, the A- and B-chain, which are connected by two disulfide-bridges. To produce a novel kind of Fc-fusion protein we have fused the A-chain as well as the B-chain to Fc-fragments containing either ‘knob’ or ‘hole’ mutations. The ‘knob-into-hole’ technique is frequently used to force heterodimerization of the Fc-domain. Using this approach, we were able to produce different variants of two-chain-insulin-Fc-protein (tcI-Fc-protein) variants. The tcI-Fc-fusion variants retained activity as shown in in vitro assays. Finally, prolonged blood glucose lowering activity was demonstrated in normoglycemic rats. Overall, we describe here the production of novel insulin-Fc-fusion proteins with prolonged times of action.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3