Inflammatory signature-based theranostics for acute lung injury in acute type A aortic dissection

Author:

Liu Hong1ORCID,Diao Yi-fei1,Qian Si-chong2,Shao Yong-feng1,Zhao Sheng1,Li Hai-yang2,Zhang Hong-jia2

Affiliation:

1. Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing 2100299 , P.R. China

2. Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University , Beijing 100029 , P.R. China

Abstract

Abstract Acute lung injury (ALI) is a serious adverse event in the management of acute type A aortic dissection (ATAAD). Using a large-scale cohort, we applied artificial intelligence-driven approach to stratify patients with different outcomes and treatment responses. A total of 2,499 patients from China 5A study database (2016–2022) from 10 cardiovascular centers were divided into 70% for derivation cohort and 30% for validation cohort, in which extreme gradient boosting algorithm was used to develop ALI risk model. Logistic regression was used to assess the risk under anti-inflammatory strategies in different risk probability. Eight top features of importance (leukocyte, platelet, hemoglobin, base excess, age, creatinine, glucose, and left ventricular end-diastolic dimension) were used to develop and validate an ALI risk model, with adequate discrimination ability regarding area under the receiver operating characteristic curve of 0.844 and 0.799 in the derivation and validation cohort, respectively. By the individualized treatment effect prediction, ulinastatin use was significantly associated with significantly lower risk of developing ALI (odds ratio [OR] 0.623 [95% CI 0.456, 0.851]; P = 0.003) in patients with a predicted ALI risk of 32.5–73.0%, rather than in pooled patients with a risk of <32.5 and >73.0% (OR 0.929 [0.682, 1.267], P = 0.642) (Pinteraction = 0.075). An artificial intelligence-driven risk stratification of ALI following ATAAD surgery were developed and validated, and subgroup analysis showed the heterogeneity of anti-inflammatory pharmacotherapy, which suggested individualized anti-inflammatory strategies in different risk probability of ALI.

Funder

Jiangsu Provincial Innovative & Entrepreneurial Talent Project

Nanjing Medical University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3