Perceived movement of nonrigid motion patterns

Author:

Koerfer Krischan1ORCID,Lappe Markus1ORCID

Affiliation:

1. Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster , Fliednerstr. 21, 48149 Münster, Germany

Abstract

Abstract Nonrigid materials such as liquids or smoke deform over time. Little is known about the visual perception of nonrigid motion other than that many motion cues associated with rigid motion perception are not reliable for nonrigid motion. Nonrigid motion patterns lack clear borders and their movement can be inconsistent with the motion of their parts. We developed a novel stimulus that creates a nonrigid vortex motion pattern in a random dot distribution and decouples the movement of the vortex from the first-order motion of the dots. We presented three moving vortices that entailed consecutively fewer motion cues, eliminating occlusion, motion borders, and velocity field gradients in the process. Subjects were well able to report the end position and travel path in all cases, showing that nonrigid motion is perceived through an analysis of the temporal evolution of visual motion patterns and does not require borders or speed differences. Adding a coherent global motion did not hamper perception, but adding local noise did, indicating that the visual system uses mid-level features that are on a local scale. We also found that participants judged the movement of the nonrigid motion patterns slower than a rigid control, revealing that speed perception was based on a combination of motion of the parts and movement of the pattern. We propose that the visual system uses the temporal evolution of a motion pattern for the perception of nonrigid motion and suggest a plausible mechanism based on the curl of the motion field.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020 Framework Programme

Publisher

Oxford University Press (OUP)

Reference38 articles.

1. Catching, hitting, and collision avoidance;Regan,1998

2. Eye movements and optical flow;Warren;J Opt Soc Am A,1990

3. Perception of self-motion from visual flow;Lappe;Trends Cogn Sci,1999

4. Visual perception of biological motion and a model for its analysis;Johansson;Percept Psychophys,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3