China's progress in synergetic governance of climate change and multiple environmental issues

Author:

Yang Jianxun12ORCID,Zhao Zhan12ORCID,Fang Wen1ORCID,Ma Zongwei1ORCID,Liu Miaomiao1ORCID,Bi Jun12

Affiliation:

1. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023 , China

2. Institute for the Environment and Health, Nanjing University Suzhou Campus , Suzhou 215163 , China

Abstract

Abstract Advancing the synergetic control of climate change and environmental crisis is crucial for achieving global sustainable development goals. This study evaluates synergetic governance levels over climate change and four environmental issues at the provincial level in China from 2009 to 2020. Our findings reveal significant progress in China's coordinated efforts to mitigate carbon emissions, reduce air pollutants, and conserve water resources. However, there remains room for improvement in managing solid waste and protecting ecological systems and overall progress in synergetic governance has slowed since 2015. Employing a random forest model, we identify socio-economic factors with great influence on synergetic climate change and environmental governance, such as energy intensity, service sector development, electronic equipment manufacturing, and transportation. Additionally, we reveal nonlinear relationships between some factors and performance of environmental subsystems, including both plateau effects (e.g. output in the smelting of ferrous metals) and U-shaped patterns (e.g. output in the manufacturing of metal products), possibly attributed to constraints in end-of-pipe treatment capacities and complexities in supply chain networks. Furthermore, through hierarchical clustering analysis, we classify provinces into four groups and provide tailored recommendations for policymakers to enhance synergetic governance levels in their respective regions. The framework established in this study also serves as a valuable reference for countries seeking to develop practical and context-specific solutions to mitigate climate and environmental risks.

Funder

The National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talent

Jiangsu R&D Special Fund for Carbon Peaking and Carbon Neutrality

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3