Trophoblast-specific overexpression of the LAT1 increases transplacental transport of essential amino acids and fetal growth in mice

Author:

Rosario Fredrick J1ORCID,Barentsen Kenneth1,Powell Theresa L12,Urschitz Johann3ORCID,Brown Thomas L4ORCID,Kanai Yoshikatsu5,Jansson Thomas1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus , Aurora, CO 80045 , USA

2. Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus , Aurora, CO 80045 , USA

3. Institue of Biogenesis, University of Hawaii , Honolulu, HI 96822 , USA

4. Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, OH 45435 , USA

5. Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University , Osaka, 565-0871 , Japan

Abstract

Abstract Placental System L amino acid transporter activity is decreased in pregnancies complicated by intrauterine growth restriction (IUGR) and increased in fetal overgrowth. However, it is unknown if changes in the expression/activity of placental Large Neutral Amino Acid Transporter Small Subunit 1 (Slc7a5/LAT1) are mechanistically linked to placental function and fetal growth. We hypothesized that trophoblast-specific Slc7a5 overexpression increases placental transport of essential amino acids, activates the placental mechanistic target of rapamycin (mTOR) signaling, and promotes fetal growth in mice. Using lentiviral transduction of blastocysts with a Slc7a5 transgene, we achieved trophoblast-specific overexpression of Slc7a5 (Slc7a5 OX) with increased fetal (+27%) and placental weights (+10%). Trophoblast-specific Slc7a5 overexpression increased trophoblast plasma membrane (TPM) LAT1 protein abundance and TPM System L transporter (+53%) and System A transporter activity (+ 21%). Slc7a5 overexpression also increased transplacental transport of leucine (+ 85%) but not of the System A tracer, 14C-methylamino isobutyric acid, in vivo. Trophoblast-specific overexpression of Slc7a5 activated placental mTORC1, as assessed by increased (+44%) phosphorylation of S6 ribosomal protein (Ser 235/236), and mTORC2 as indicated by phosphorylation of PKCα-Tyr-657 (+47%) and Akt-Ser 473 (+96%). This is the first demonstration that placental transport of essential amino acids is mechanistically linked to fetal growth. The decreased placental System L activity in human IUGR and the increased placental activity of this transporter in some cases of fetal overgrowth may directly contribute to the development of these pregnancy complications.

Funder

NIH-NICHD

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3