Sulfide oxidation by members of the Sulfolobales

Author:

Fernandes-Martins Maria C1ORCID,Colman Daniel R1ORCID,Boyd Eric S1ORCID

Affiliation:

1. Department of Microbiology and Cell Biology, Montana State University , Bozeman, MT 59717, USA

Abstract

Abstract The oxidation of sulfur compounds drives the acidification of geothermal waters. At high temperatures (>80°C) and in acidic conditions (pH <6.0), oxidation of sulfide has historically been considered an abiotic process that generates elemental sulfur (S0) that, in turn, is oxidized by thermoacidophiles of the model archaeal order Sulfolobales to generate sulfuric acid (i.e. sulfate and protons). Here, we describe five new aerobic and autotrophic strains of Sulfolobales comprising two species that were isolated from acidic hot springs in Yellowstone National Park (YNP) and that can use sulfide as an electron donor. These strains significantly accelerated the rate and extent of sulfide oxidation to sulfate relative to abiotic controls, concomitant with production of cells. Yields of sulfide-grown cultures were ∼2-fold greater than those of S0-grown cultures, consistent with thermodynamic calculations indicating more available energy in the former condition than the latter. Homologs of sulfide:quinone oxidoreductase (Sqr) were identified in nearly all Sulfolobales genomes from YNP metagenomes as well as those from other reference Sulfolobales, suggesting a widespread ability to accelerate sulfide oxidation. These observations expand the role of Sulfolobales in the oxidative sulfur cycle, the geobiological feedbacks that drive the formation of acidic hot springs, and landscape evolution.

Funder

National Science Foundation

Beverly Ferguson and the Molecular Bioscience Program

Montana State University

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3