Effects of firebricks for industrial process heat on the cost of matching all-sector energy demand with 100% wind–water–solar supply in 149 countries

Author:

Jacobson Mark Z1ORCID,Sambor Daniel J1,Fan Yuanbei F1ORCID,Mühlbauer Andreas1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Room 397, Stanford, CA 94305-4020 , USA

Abstract

Abstract Refractory bricks are bricks that can withstand high temperatures without damage to their structures. They have been used to insulate kilns, furnaces, and other hot enclosures for thousands of years. Firebricks are refractory bricks that can, with one composition, store heat, and with another, insulate the firebricks that store the heat. Because firebricks are made from common materials, the cost per kilowatt-hour-thermal of a firebrick storage system is less than one-tenth the cost per kilowatt-hour-electricity of a battery system. It has thus been hypothesized that using excess renewable electricity to produce and store industrial process heat in firebricks can provide a low-cost source of continuous heat for industry. Here, it is hypothesized further that, upon a transition to 100% clean, renewable energy worldwide, using firebricks to store industrial process heat can reduce electricity generator, electricity storage, and low-temperature heat storage needs, thereby reducing overall energy cost. Both hypotheses are tested across 149 countries combined into 29 world regions. Results suggest, relative to a base case with no firebricks, using firebricks may reduce, among all 149 countries, 2050 battery capacity by ∼14.5%, annual hydrogen production for grid electricity by ∼31%, underground low-temperature heat storage capacity by ∼27.3%; onshore wind nameplate capacity by ∼1.2%, land needs by ∼0.4%, and overall annual energy cost by ∼1.8%. In sum, the use of firebricks for storing industrial process heat appears to be a remarkable tool in reducing the cost of transitioning to clean, renewable energy across all energy sectors.

Funder

U.S. Army Corps of Engineers Engineer Research and Development Center

Publisher

Oxford University Press (OUP)

Reference37 articles.

1. World Energy Outlook 2023

2. Batteries or hydrogen or both for grid electricity storage upon full electrification of 145 countries with wind-water solar?;Jacobson;iScience,2024

3. Converting excess low-price electricity into high-temperature stored heat for industry and high-value electricity production;Forsberg;Electr J,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3