Steady-like topology of the dynamical hydrogen bond network in supercooled water

Author:

Martelli Fausto1ORCID

Affiliation:

1. IBM Research Europe , Keckwick Lane, Daresbury, WA4 4AD, UK

Abstract

Abstract We investigate the link between topology of the hydrogen bond network (HBN) and large-scale density fluctuations in water from ambient conditions to the glassy state. We observe a transition from a temperature-dependent topology at high temperatures, to a steady-like topology below the Widom temperature TW ∼ 220 K signaling the fragile-to-strong crossover and the maximum in structural fluctuations. As a consequence of the steady topology, the network suppresses large-scale density fluctuations much more efficiently than at higher temperatures. Below TW, the contribution of coordination defects of the kind A2D1 (two acceptors and one donor) to the kinetics of the HBN becomes progressively more pronounced, suggesting that A2D1 configurations may represent the main source of dynamical heterogeneities. Below the vitrification temperature, the freezing of rotational and translational degrees of freedom allow for an enhanced suppression of large-scale density fluctuations and the sample reaches the edges of nearly hyperuniformity. The formed network still hosts coordination defects, hence implying that nearly hyperuniformity goes beyond the classical continuous random network paradigm of tetrahedral networks and can emerge in scenarios much more complex than previously assumed. Our results unveil a hitherto undisclosed link between network topology and properties of water essential for better understanding water’s rich and complex nature. Beyond implications for water, our findings pave the way to a better understanding of the physics of supercooled liquids and disordered hyperuniform networks at large.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3