Passive dynamics regulates aperiodic transitions in flapping wing systems

Author:

Majumdar Dipanjan1ORCID,Ravi Sridhar2,Sarkar Sunetra1ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Madras , Chennai, 600036 Tamil Nadu , India

2. School of Engineering and Information Technology, University of New South Wales , Canberra, ACT2600 , Australia

Abstract

Abstract Natural and artificial flapping wing flyers generally do not exhibit chaos or aperiodic dynamic modes, though several experimental and numerical studies with canonical models of flapping foils have reported inevitable chaotic transition at high ranges of dynamic plunge velocity (κh). Here we considered the idealized case of a pitching–plunging flapping foil and numerically investigated the effects of passive pitching dynamics on the fluid forces and dynamical states, and compared it with a fully actuated wing. We found that in comparison to fully actuated foils, aperiodic transition can be avoided even for high κh when passive oscillations are allowed. Passive pitching modulated the relative foil orientation with respect to the incoming free stream to maintain a lower effective angle-of-attack throughout the stroke and reduced the leading-edge-vortex (LEV) strength. Absence of aperiodic triggers such as flow separation and strong LEVs keep the wake periodic, and chaotic transition is averted. In the presence of fluctuating inflow conditions, passive pitching attenuated the fluid loads experienced by the airfoil thus improving the wing’s gust mitigating potential. These findings highlight the favorable properties of passive dynamics in regularizing aerodynamic loads on flapping wing systems and presents viable solutions for artificial flying platforms.

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bistable click mechanism for dipteran flight robot;International Journal of Mechanical Sciences;2024-11

2. Controlling the chaotic wake of a flapping foil by tuning its chordwise flexibility;Journal of Fluids and Structures;2024-06

3. Design and motion analysis of a space crank rocker biomimetic aircraft;Applied Mathematics and Nonlinear Sciences;2024-01-01

4. 变翼展的仿生扑翼尾迹特征;Acta Mechanica Sinica;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3