The staphylococcal biofilm protein Aap mediates cell–cell adhesion through mechanically distinct homophilic and lectin interactions

Author:

Wang Can1,Chantraine Constance1,Viljoen Albertus1,Herr Andrew B2,Fey Paul D3,Horswill Alexander R4,Mathelié-Guinlet Marion1,Dufrêne Yves F1

Affiliation:

1. Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve , Belgium

2. Divisions of Immunobiology and Infectious Diseases, Cincinnati Children’s Hospital Medical Center , Cincinnati, OH 45229 , USA

3. Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE 68198 , USA

4. Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO 80045 , USA

Abstract

Abstract The accumulation phase of staphylococcal biofilms relies on both the production of an extracellular polysaccharide matrix and the expression of bacterial surface proteins. A prototypical example of such adhesive proteins is the long multidomain protein Aap (accumulation-associated protein) from Staphylococcus epidermidis, which mediates zinc-dependent homophilic interactions between Aap B-repeat regions through molecular forces that have not been investigated yet. Here, we unravel the remarkable mechanical strength of single Aap–Aap homophilic bonds between living bacteria and we demonstrate that intercellular adhesion also involves sugar binding through the lectin domain of the Aap A region. We find that the mechanical force needed to unfold individual β-sheet-rich G5-E domains from the Aap B-repeat regions is very high, ranging from 300 up to 1,000 pN at high loading rates, indicating these are extremely stable. This high mechanostability provides a means to the cells to form highly adhesive and cohesive biofilms capable of sustaining high physiological shear stress. Importantly, we identify a previously undescribed role of Aap in bacterial–bacterial adhesion, that is, heterophilic sugar binding by a specific lectin domain located in the N-terminal A region, which might be important to establish initial contacts between cells before strong homophilic bonds come into play. This study emphasizes the remarkable mechanical and binding properties of Aap as well as its wide diversity of adhesive functions.

Funder

European Research Council

Horizon 2020 Framework Programme

Fonds De La Recherche Scientifique - FNRS

National Institutes of Health

Università degli Studi di Pavia

Publisher

Oxford University Press (OUP)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3